miércoles, 16 de febrero de 2011

PARTÍCULAS ELEMENTALES

Todo lo que existe en el universo, desde un palillo hasta una galaxia, está hecho de materia que se puede descomponer en una docena de partículas elementales y que interactúan por medio de 4 fuerzas.

Las partículas elementales son los objetos más simples que se pueden concebir. En general no tienen partes ni se pueden dividir en componentes más sencillas, sin embargo los experimentos de colisiones de partículas a muy altas energías han revelado que algunas partículas que se creían simples en realidad son compuestas

Particulas e interacciones:
Además de las 12 partículas elementales que sirven de ladrillos para la construcción del mundo material, cada una de las 4 interacciones básicas tiene asociada una o varias partículas portadoras de la interacción o fuerza.

Antimateria:
Se ha observado la existencia de partículas elementales hechas de antimateria. Estas partículas son idénticas a sus correspondientes partículas excepto que tienen carga eléctrica (y propiedades magnéticas) de signo opuesto. Cuando una partícula de materia se encuentra con su correspondiente partícula de antimateria, éstas se aniquilan y su masa en reposo se convierte en energía en forma de fotones.

Tipos de partículas elementales

Se dividen en 2: Quarks y Leptones.
Untercer grupo son las partículas portadoras de fuerzas.

Bariones y mesones: Existen otras partículas que se pueden construir a partir de las más elementales que aparecen en la tabla anterior. Por ejemplo se ha visto que en la naturaleza se dan partículas formadas por combinaciones de tres quarks o por combinaciones de un par quark y anti-quark (anti-quark es la antipartícula del quark). Estos grupos así formados se llaman Bariones y Mesones respectivamente.
Bosones y fermiones: Según la propiedad cuántica llamada spin, las partículas se clasifican en Bosones (si tienen spin entero) o fermiones (si tienen spin semi-entero). El electrón es un ejemplo de un fermión, mientras que las partículas portadoras de una interacción son bosones. 

Electrón: Los electrones son partícula con carga eléctrica negativa que dan origen a la electricidad cuando fluyen en un conductor. El electrón pertenece a la familia de los leptones.

Gluón:Es la partícula portadora de la interacción nuclear fuerte.



 


Gravitón:Es la partícula portadora de la interacción gravitacional
 





Leptón:Según el modelo estándar las partículas elementales han sido agrupadas en dos grandes familias: los quarks y los leptones. Los leptones son partículas muy ligeras que siempre interactúan por medio de la fuerza nuclear débil y si tienen carga también sienten la interacción electromagnética, pero nunca sienten la interacción nuclear fuerte. Ejemplos de los leptones son: el electrón, el muón, el tau y el neutrino.
Neutrino: Un neutrino es una partícula de masa nula (o muy cercana a nula) que no tiene carga y no siente la fuerza nuclear fuerte. Fue propuesto por Wolfgang Pauli en 1930 y descubierto en 1956 por Fred Reines y Clyde Cowan. En el universo hay muchos neutrinos (250 en cada centímetro cuadrado del cosmos), pero como éstos no sienten la fuerza nuclear fuerte ni la fuerza electromagnética, es muy difícil detectarlos. En el tiempo que usted demora en leer esta frase, millones de neutrinos han atravezado su cuerpo a la velocidad de la luz. Estas partículas pueden constituir gran parte de la materia oscura del universo.






Neutrón:Se encuentra normalmente, como el protón, en los núcleos atómicos. El neutrón no tiene carga eléctrica, está hecho de tres quarks y no es una partícula estable en general. Cuando se encuentra libre, fuera del núcleo, ésta decae en un protón, un positrón y un neutrino.






Positrón :Es la anti-partícula del electrón. Es decir tiene la misma masa del electrón, pero su carga es de signo contrario (+) y cuando se encuentra con en electrón, este par se aniquila convirtiendo toda su masa en energía en forma de radiación (fotones).





Protón :Es una partícula de carga eléctrica igual a la del electrón pero positiva y con una masa 1800 veces mayor a la del electrón. Un protón está formado por tres quarks y se encuentra normalmente dentro de núcleos atómicos. En ambientes de muy alta energía como en el Sol, los protones se encuentran libres. 





Quarks:Por medio de experimentos de colisiones entre partículas elementales se ha podido determinar que el protón y el neutrón no son partículas simples (sin partes). Por el contrario, dentro del protón hay partes con sus propiedades individuales que se suman para formar las características visibles del protón. Estas partes que forman al protón se llaman quarks.

Los quarks son partículas elementales, que no solamente forman al protón, sino a toda una serie de familias de otras partículas. Combinaciones de tres quarks forman los bariones (como el protón) y combinaciones de un quark y un anti-quark forman la famila de los mesones. Los quarks sienten la fuerza nuclear fuerte, pero no se encuentran libres en la naturaleza. Siempre están en estados ligados con otros quarks ya sea en un barión o en un mesón.

sábado, 12 de febrero de 2011

CARRERAS EN LA UNAM!!!!!

Aquí les dejo a todos un link que los llevará a una página que contiene todas las carreras de la UNAM y sus asignaturas por semestre, en sistema abierto y escolarizado...
https://www.dgae.unam.mx/planes/carrerax.html

miércoles, 9 de febrero de 2011

Ley de Hubble

Hubble descubrió,que las galaxias parecen alejarse de nosotros a una velocidad V, que es tanto mayor cuanto más grande sea su distancia d. Más concretamente, el astrónomo norteamericano intuyó y posteriormente postuló la existencia de una rigurosa relación de proporcionalidad, V=Hd, entre la velocidad de recesión (o corrimiento al rojo, término que alude al fenómeno utilizado para medir V) y la distancia de las galaxias, deducida a partir de su luminosidad aparente. Ahora bien, la interpretación de esta empírica ley de Hubble en el contexto de las teorías cosmológicas elaboradas sobre la base de la relatividad general de Einstein nos ha llevado a considerar un universo dinámico, cuyo origen y cuyo destino pueden deducirse del actual movimiento de alejamiento de las galaxias
El hecho de que las galaxias se alejen de nosotros a velocidades que dependen de sus distancias, pero no de la dirección de fuga de los objetos, parece seugerir que el observador terrestre se encuentra en una posición privilegiada en el cosmos, idea que equivaldría a la enésima reaparición de la pretendida centralidad del ser humano, fruto de la arrogancia, la ignorancia y el miedo.


Para evitar un antropocentrismo que no nos convence, por ser contradictorio con la físicia y la metafísica modernas, y aun así salvar las apariencias que surgen inequívocas de la ley de Hubble, debemos admitir que el universo ofrece siempre la misma imagen al observador, independientemente dle lugar en que se encuentre. Un principio de uniformidad (o principio cosmológico) enunciado de esta forma puede conciliarse con la aparente recesión de las galaxias a nuestro alrededor, si atribuimos esta expansión a la dilatación del sustrato donde se encuentran los cuerpos celestes, es decir, al espacio.

Para convencernos, imaginemos que inflamos un globo, sobre cuya superficie se encuentran dispersas algunas hormigas. Cada insecto observará que sus congéneres se alejan de él, por efecto de la dilatación del sustrato de goma, y tendrá la sensación de ser el centro de un movimiento general de expansión; pero evidentemente, se equivoca. Esperemos ahora el tiempo necesario para que el radio del globo se duplique y, con él, las distancias entre las hormigas. Está claro que , a igualdad de tiempo, harán falta pequeñas velocidades para duplicar distancias pequeñas y velocidades grandes para grandes distancias. Éste es el significado de la ley de Hubble.

Problemas con la teoría del Big Bang

Uno de los problemas sin resolver en el modelo del Universo en expansión es si el Universo es abierto o cerrado (esto es, si se expandirá indefinidamente o se volverá a contraer).
La diferencia entre estos dos métodos sugiere la presencia de materia invisible, la llamada materia oscura, dentro de cada cúmulo pero fuera de las galaxias visibles. Hasta que se comprenda el fenómeno de la masa oculta, este método de determinar el destino del Universo será poco convincente.

Muchos de los trabajos habituales en cosmología teórica se centran en desarrollar una mejor comprensión de los procesos que deben haber dado lugar al Big Bang. La teoría inflacionaria, formulada en la década de 1980, resuelve dificultades importantes en el planteamiento original de Gamow al incorporar avances recientes en la física de las partículas elementales. Estas teorías también han conducido a especulaciones tan osadas como la posibilidad de una infinidad de universos producidos de acuerdo con el modelo inflacionario.

Sin embargo, la mayoría de los cosmólogos se preocupa más de localizar el paradero de la materia oscura, mientras que una minoría, encabezada por el sueco Hannes Alfvén, premio Nobel de Física, mantienen la idea de que no sólo la gravedad sino también los fenómenos del plasma, tienen la clave para comprender la estructura y la evolución del Universo.
 

BIG BANG!!!

El Big Bang, literalmente gran estallido, constituye el momento en que de la "nada" emerge toda la materia, es decir, el origen del Universo. La materia, hasta ese momento, es un punto de densidad infinita, que en un momento dado "explota" generando la expansión de la materia en todas las direcciones y creando lo que conocemos como nuestro Universo.

Inmediatamente después del momento de la "explosión", cada partícula de materia comenzó a alejarse muy rápidamente una de otra, de la misma manera que al inflar un globo éste va ocupando más espacio expandiendo su superficie. Los físicos teóricos han logrado reconstruir esta cronología de los hechos a partir de un 1/100 de segundo después del Big Bang. La materia lanzada en todas las direcciones por la explosión primordial está constituid, etc. hasta más de 89 partículas conocidas hoy en día.
Gamow planteó que el Universo se creó en una explosión gigantesca y que los diversos elementos que hoy se observan se produjeron durante los primeros minutos después de la Gran Explosión o Big Bang, cuando la temperatura extremadamente alta y la densidad del Universo fusionaron partículas subatómicas en los elementos químicos.
A causa de su elevadísima densidad, la materia existente en los primeros momentos del Universo se expandió con rapidez. Al expandirse, el helio y el hidrógeno se enfriaron y se condensaron en estrellas y en galaxias. Esto explica la expansión del Universo y la base física de la ley de Hubble.

Según se expandía el Universo, la radiación residual del Big Bang continuó enfriándose, hasta llegar a una temperatura de unos 3 K (-270 °C). Estos vestigios de radiación de fondo de microondas fueron detectados por los radioastrónomos en 1965, proporcionando así lo que la mayoría de los astrónomos consideran la confirmación de la teoría del Big Bang.

Algo sobre la teorìa de cuerdas....

La Teoría de Cuerdas es un modelo de la física en el que se contemplan las partículas materiales puntuales como si éstas fueran "estados vibracionales" de objetos denominados "cuerdas" o "filamentos".
Así, según esta perspectiva, por ejemplo, los electrones no serían “puntos” u objetos puntuales sino minúsculas cuerdas que vibrarían en un espacio-tiempo de más de cuatro dimensiones, pudiendo no sólo moverse como un punto en un espacio tridimensional sino, también, oscilar de distintas maneras para comportarse como un fotón, un quark o cualquier otra partícula subatómica.
Los seguidores de la teoría de cuerdas consideran que esta teoría es la mejor candidata para convertirse en una Teoría Unificada o
Teoría del Todo, es decir, una teoría capaz de describir todos los fenómenos ocurridos en la naturaleza debido a las cuatro fuerzas fundamentales: la fuerza gravitacional, la fuerza electromagnética y las fuerzas de interacción nuclear fuerte y débil.

Según los científicos, utilizar la Teoría de Cuerdas para predecir cómo se comportan las partículas cuánticas entrelazadas supondría, por tanto, la primera oportunidad de probar dicha teoría mediante experimentación.
En otras palabras, señala el profesor Michael Duff
del Departamento de Física Teórica del Imperial College y director de la presente investigación: “si los experimentos demuestran que nuestras predicciones sobre el entrelazamiento cuántico son correctas, esto demostrará que la Teoría de Cuerdas “sirve” para predecir el comportamiento de los sistemas cuánticos entrelazados”.
Esta demostración no probará que esta Teoría es la mejor opción para generar una “Teoría Unificada” o “Teoría del Todo”, pero sí podría resultar de gran importancia para los físicos teóricos, ya que demostraría la aplicación de la Teoría de Cuerdas a un área inesperada.
Por el momento, no hay una explicación obvia sobre el porqué una teoría que está siendo desarrollada para describir el funcionamiento fundamental de nuestro universo resulta también útil para predecir el comportamiento de los sistemas cuánticos entrelazados.
Según Duff, no hay ninguna conexión obvia para explicar por qué una teoría que está siendo desarrollada para describir el funcionamiento fundamental de nuestro universo es útil para predecir igualmente el comportamiento de sistemas cuánticos entrelazados. “Esto puede ser un detalle muy profundo sobre el mundo en que vivimos, o puede ser nada más que una coincidencia peculiar. De cualquier manera, resultará útil”, afirmó el científico.

jueves, 3 de febrero de 2011

miércoles, 2 de febrero de 2011

Quarks

La materia, en este caso refiriendonos a las partículas elementales (protón, neutrón y electrón) están compuestas a su vez por partículas más pequeñas llamadas quarks

Positrones, antirprotones y ¿antineutrones?

La materia normal como la conocemos, está compuesta de átomos, las distintas organizaciones de distintos átomos forman todos los tipos de moléculas y estos a su vez la materia. Estos átomos están compuestos por electrones, protones y neutrones, los elementos mas pequeños conocidos (sin tener en cuenta los quarks).
La antimateria se compone del mismo modo, con algo llamado anti-átomos, que estan formados por antielectrones (o tambien llamados positrones), antiprotones y el extraño antineutron. 
La antimateria es materia constituida por la antiparticulas (antielectrones, antiprotones y antineutrones).

La diferencia los electrones y protones de los antielectrones y los antiprotones y los antineutrones es basicamente la carga electrica, son idénticas en aspecto físico y en constitución, sus movimientos rotatorios se han invertido, el polo sur magnetico, por decirlo asi, esta arriba y no abajo, de esta manera su carga eléctrica es la opuesta de lo que deveria de ser.

Como vimos hasta ahora, el positron es la contrapartida del electron por su carga contraria, y el antiproton es tambien 'anti' por su carga. 
El antielectron es tan estable como el electron, de hecho es identico al electron en todos sus aspectos, excepto en su carga electrica. Su existencia puede ser indefinida. Aunque el promedio de 'vida' es de una millonésima de segundo, hasta que se encuentra con un electron, durante un momento relampagueante quedaran asociados el electron y el positron; ambas partículas giraran en torno a un centro de fuerza comun. Pero la existencia de este sistema, como máximo, durará una diezmillonesima de segundo ya que se combinan el positron y el electron.
 
Cuando se combinan las dos particulas opuestas, se produce una neutralizacion mutua y literalmente desaparecen, no dejan ni rastro de materia ('aniquilamiento mutuo'). Pero como sabemos la materia al igual que la energia no puede desaparecer, como resultado de esto queda la energia en forma de radiacion gamma. De tal forma como habia sugerido el genio Albert Einstein: la materia puede convertirse en energia, y viceversa.

El antiproton es tan evanescente como el positron, por lo menos en nuestro Universo. En una infima fraccion de segundo después de su creacion, la particula desaparece (al igual que el antielectron), arrastrada por algun nucleo normal cargado positivamente. Entonces se aniquilan entre si el antiproton y un proton del nucleo, que se transforman en energia y particulas menores.

En ocasiones, el proton y el antiproton solo se rozan ligeramente en vez de llegar al choque directo. Cuando ocurre esto, ambos neutralizan mutuamente sus respectivas cargas. El proton se convierte en neutron, lo cual es bastante logico. Pero no lo es tanto que el antiproton se transforme en un 'antineutron'. 
Sea como fuere, la rotacion del neutron nos da la respuesta a esta pregunta: ¿Que es el antineutrón? Pues, simplemente, un neutron cuyo movimiento rotatorio se ha invertido y al igual que el positron y el antiproton, muestra exactamente el mismo fenomeno de los polos invertidos.

Por lo pronto, la teoria es bastante solida, y ningun fisico lo pone en duda. La antimateria puede existir.
 

Antimateria

Este es un video que explica de forma rápida qué es la materia y la antimateria. Este tema es importante porque la teoría del Big Bang está en disputa por esta cuestión. Se supone que, con la explosión causada por el Big Bang debería de haber igual cantidad de ambas materias, pero esto no es así, ya que en el universo es muy poca la cantidad de antimatera.